Если вас интересует подключение микроконтроллера (здесь и далее МК), а также подключения к нему кнопки, питания, или светодиода. Или вы хотите знать что делать с  выводами AREF или AGND, что представляет собой AVCC. И собственно понять как все таки подключить микроконтроллер то данная статья сможет вам слегка приоткрыть занавес в изучении мира микроконтроллеров.

Все нижеописанное относится к AVR контроллерам, но в случае с PIC все процедуры схожи, из-за единства принципов.

Питание микроконтроллера

В своей работе МК использует электроэнергию. Поэтому для того, чтобы правильно выполнить подключение микроконтроллера, требуется напряжения от 1.8 до 5 В. Любой МК AVR работает с напряжением от 5 Вольт. Поэтому примем это напряжение как эталон от него и будем отталкиваться. Оно имеет обозначение VCC.

Нулевой вывод — это GND. Если рассматривать блок питания ПК, то провод черного цвета является здесь GND (к тому же, провод Земли как правило черный), провод красного цвета — это +5, станет VCC.

Если вы в качестве питания для микроконтроллера планируете использовать батарейки, то минус батареек обозначим как GND, а их плюс, как VCC. 

При этом важно, чтобы напряжение от батарей сохранялось в нужных лимитах для конкретной модели МК. Эти данные указаны в datasheet (документации) на микроконтроллер.

Такой вопрос как подключение микроконтроллера должен учитывать то, что существуют низковольтные модели (как 2313V), их нижний уровень напряжения будет значительно занижена. Также важны частоты. Здесь показано то, как наибольшая частота может зависеть от напряжения. Очевидно, что при низком уровне, предельные частоты будут ниже. При том низковольтные модели вдвое медленней высоковольтных. Но их можно разогнать, как и любой процессор.

Все, что требуется AVR контроллерам для функционирования, это питание. На входы VCC необходимо подавать 5 В. (или же другое значение в зависимости от модели), а входы GND необходимо заземлить.

МК может иметь и ни один вход VCC, а несколько, это же относится и к GND входам (в особенности если они помещены в квадратный корпус TQFP, где питалово на виду). Важно, чтобы питание кристалла было равномерным со всех сторон, для избежания перегрева внутренних питательных цепей.

Иначе может возникнуть ситуация типа следующей: допустим, вы осуществили подключение питалова лишь с одной из сторон чипа. С другой стороны решили установить на каждую портовую линию светодиод, и затем все их сразу и зажгли.

Реакция устройства будет такова: внутренняя шина питания, не поняв заданного параметра электричества, исчезла, а процессор, казалось бы не имея на то никаких причин, вдруг сгорел.

Поэтому очень важно производить правильное подключение всех выводов GND и VCC. Необходимо соединить их требуемым образом и подать нужное питание.

AVCC и AGND — это питание аналогоцифрового преобразователя и аналоговая земля. АЦП измеряет напряжение, подавать на него питание лучше при помощи фильтров, чтобы избежать пагубного влияния помех в электроцепи.

Поэтому в схемах земля бывает аналоговой и цифровой (соединение их должно присутствовать только в 1 точке). Напряжение на AVCC нужно подавать при помощи дроссельного фильтра.

Если не требуется применение АЦП и отсутствует необходимость в точных расчетах измерений, то на AVCC просто подайте 5 вт, равно как и на AGND и VCC, посадите на землю, как и все остальное. Но подключать их нужно!

Простое подключение микроконтроллера AVR

Схема простого подключения микроконтроллера AVR

Все это нужно, чтобы контроллер мог заработать. VСС провод до программатора указан пунктирной линией, ибо является опциональным. При наличии внешнего источника питания, в нем необходимости нет. Но все-таки лучше сначала питать общею систему (МК и программатор) от единого источника, так как это даст возможность с успехом опробовать прошивку.

Следует использовать внешние навесные элементы.

Схема подключения с микроконтроллера AVR с внешними элементами

Как видишь, добавился дроссель в цепь питания AVCC, а также конденсаторы. Хорошим тоном является ставить керамический конденсатор на сотню нФ между VCC и GND у каждой микросхемы (а если у микрухи много входов питания и земель, то между каждым питанием и каждой землей) как можно ближе к выводам питания — он сгладит краткие импульсные помехи в шине питания вызванные работой цифровых схем. Конденсатор на 47 мкФ в цепи питания сгладит более глубокие броски напряжения. Конденсатор между AVCC и GND дополнительно успокоит питание на АЦП.

Вход AREF это вход опорного напряжения АЦП. Туда вообще можно подать напряжение относительно которого будет считать АЦП, но обычно используется либо внутренний источник опорного напряжения на 2.56 вольта, либо напряжение на AVCC, поэтому на AREF рекомендуется вешать конденсатор, что немного улучшит качество опорного напряжения АЦП(а от качества опоры зависит адекватность показаний на выходе АЦП).

Схема сброса

Резистор на RESET. AVR имеет собственную схему сброса, сигнал RESET оснащен резистором на 100 кОм к VCC. Но это не надежно! Лучше подтянуть RST до питания при помощи резистора 10 кОм.
Еще одна схема сброса

Простая схема сброса микроконтроллера

Ее преимущество в том, что когда схема включается, конденсатор находится в разряженном состоянии и напряжение на RST почти нулевое, микроконтроллер не начинает свою работу, ибо ему выдается непрерывный сброс. Но вскоре конденсатор получит заряд через резистор и напряжение на RST составит лог1, и МК будет запущен.

Задержка равняется T=R*C ( в примере: 1 сек.). Она требуется, чтобы МК не начал работать раньше остальных устройств.

Тактовый сигнал и его источник

Тактовый генератор является центром МК. По всем импульсам происходят различные операции в контроллере — данные ходят по шинам и регистрам, выводы портов переключаются, и т.д. При большей скорости тактовой частоты, МК будет быстрее выполнять свою работу и использовать большее количество энергии.

Способы задания частоты тактового генератора

Задают импульсы при помощи встроенного в МК тактового генератора, или внешнего. Быстрота внутреннего генератора может зависеть от настроек МК и обвязки.

Типы генератора:

  • внутренний (имеющий внутреннюю задающую цепочку RC).
  • Обвязка не нужна. Выводы XTAL2 и XTAL1 нет необходимости подключать, но их можно оставить в качестве портов ввода вывода (при возможности). Выбирается 1 из 4 (по умолчанию) значений внутренней частоты.
  • внутренний(имеющий внешнюю задающую RC цепь).Нужен внешний для мк резистор и конденсатор. Можно менять в процессе тактовую частоту, изменяя значение резистора.
  • внутренний (имеющий внешний задающий кварц).С внешней стороны устанавливается кварцевый резонатор и 2 конденсатора. При низкочастотном кварце (до 1 МГц) конденсатор не потребуется.
  • внешний. Другое устройство подает на вход МК прямоугольный сигнал, задающий такты.

Плюсы различных схем

При наличии внутренней цепи RC мы может получить экономию места на плате, не потребуются дополнительные элементы, но не будет максимальной частоты, плюс она будет зависеть от температуры.

Внешний кварц является точным, нужны дополнительные элементы. Возможен максимальный уровень производительности МК.

Методы тактования МК можно посмотреть в даташите в System Clock and Clock Options, при этом важна конфигурация фьюз битов. Фьюз биты лучше не трогать, если пока вы не являетесь спецом в настройках.

Как подключить кнопку или светодиод к микроконтроллеру

Если говорить о взаимодействии с внешней средой, то в качестве самостоятельного устройства микроконтроллер не представляет особого интереса — просто что-то там внутри сам с собой тикает. А если вы решите отобразить его действия, то уже станет интереснее.

Подключение кнопки и светодиода к микроконтроллеру

Светодиод или кнопку можно подключить используя ряд нехитрых операций:

Для кнопки необходимо выбрать ножку I/O, и произвести ее подключение при помощи кнопки на землю. Конфигурация самого вывода будет представлять собой DDRxy=0 PORTxy=1 (вход с подтяжкой).

При этом, если кнопка не находится в нажатом положении, при помощи подтягивающего резистора, вход будет иметь большое напряжение, а из бит PINху при чтении мы получим 1. При нажатой кнопке, вход будет на земле, а напряжение на этом входе упадет до нулевого, из PINxy будет прочитываться 0. По нулевым позициям в битах PINх регистра нам становится известно о нажатом состоянии кнопки.

Пунктиром выделен еще один подтягивающий резистор. Хотя внутри AVR возможно подключение к порту подтяжки, она будет ненадежной: 100 кОм. Поэтому она может быть просто придавлена к земле при помощи наводки или помехи, что даст ложное срабатывание. Для хорошей схемы необходима внешняя подтяжка на 10 кОм.

Способы подключения светодиода к порту

Всего существуют 2 схемы:

  • Порт-Питание;
  • Порт-земля.

В первом случае диод зажигается при выдаче в порт логический ноль: уровень низкий (близок к нулю). При втором способе, чтобы диод зажегся, следует выдать в порт логическую единицу: уровень высокий, приравненный к значению VCC.

Для AVR подходит любой их этих способов, но старые модели МК тянули вниз лучше, поэтому Порт-Питание более популярен. Настройка вывода порта на выход для светодиода (DDRxy=1), при этом, зависимо от параметра в PORTxy ножка будет иметь либо низкое либо высокое напряжение.

Производить подключение светодиода следует через резистор. Так как уровень прямого сопротивления светодиода небольшой. И при отсутствии лимитов проходящего сквозь него тока, он может сгореть, а также прожечь вывод МК. Для нормальной работы светодиода достаточно примерно 3…15 мА.

Полезные ссылки по проекту

Похожие записи

Память микроконтроллера. Виды памяти микроконтроллеров

Практически все современные микроконтроллеры имеют на своем борту 3 вида  памяти: Виды памяти микроконтроллеров память программ FLASH; оперативная память (ОЗУ) SRAM (Static RAM); ...

Светодиодная мигалка на микросхеме NE 555

Это простая схема двойного светодиодного мигающего сигнала. В качестве базовой схемы нестабильного мультивибратора используется таймер NE 555. Светодиоды включаются по очереди, частоту...

Схема полицейской мигалки на микроконтроллере

Представленная схема полицейской мигалки на микроконтроллере и светодиодах может работать в 16 различных режимах. Режим выбирается при помощи одной кнопки, и собрана на микроконтроллере...

Последовательный интерфейс I2C

Последовательный интерфейс I2C (также его обозначается как IIC) довольно популярный последовательный интерфейс. Свою популярность он получил за неплохую скорость передачи информации. В...

Последовательный периферийный интерфейс SPI

Последовательный периферийный интерфейс SPI (Serial Peripheral Interface) — последовательный стандарт передачи данных. Предназначен для сопряжения микроконтроллеров и периферийных устройств. SPI...

Подключение кнопки к микроконтроллеру AVR

В это примере подключим и научимся обрабатывать события нажатия кнопок при помощи микроконтроллера AVR. Другими словами мониторить состояние кнопок, и при каких либо изменениях делать что...

Только полноправные пользователи могут оставлять комментарии. Войдите , пожалуйста.